
29 maggio 2025

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

1

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Exploring Integration Methodologies
for Keccak Permutation in
RISC-V Architectures

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

2

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

2

23 / 05 / 2025

Agenda
01

Cryptography (PQC), Hardware Devices for PQC, PQC on
Embedded/IoT Devices

02
What is RISC-V? How accelerators can be integrated?
 What are we accelerating?

03
Design parameters, Loosely coupled, coprocessor and
tightly coupled integrations.

04

Integration into the X-HEEP System, Loosely-coupled,
Coprocessor, and Tightly-coupled Integration.

04

Implementations Results, Conclusions

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

3

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Why Accelerators for PQC?

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

4

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

PQC Algorithms and Quantum Threat

• Focuses on algorithms that remain secure against quantum
computers.

• Relies on more complex mathematical structures or increased
use of hashing
→ results in heavier computational workloads

Relevance of Keccak (SHA-3)

• It the sponge-based hash function selected as SHA-3
by NIST.

• It appears in hashing-based signatures and as a
building block for other post-quantum protocols.

• It plays a pivotal role in many schemes that must
handle significantly larger keys and/or repeated
hashing operations.

Post-Quantum Cryptography

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

5

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Hardware Devices for PQC

• It involve more computationally intensive operations than classical crypto.
• The choice of hardware, whether a specialized accelerator or a general-purpose CPU, directly impacts overall system performance,

energy consumption, and feasibility of deploying these algorithms in different contexts.

Why This Matters for PQC

General-purpose CPUs offer
• Flexibility
• An established software ecosystem,
• BUT they can’t always meet the

performance, or efficiency demands of post-
quantum workloads.

Offloading the most demanding cryptographic tasks to a dedicated
accelerator, we can:
• boost throughput
• reduce energy consumption
At the cost of additional design effort and hardware resources.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

6

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

PQC on Embedded/IoT Devices

Performance Bottlenecks
Hashing (e.g., Keccak) and other core operations (like polynomial arithmetic for lattice-based crypto) can be computationally heavy if implemented

purely in software on a generic CPU. This leads to higher latency and potential throughput limitations, especially for repeated or batched operations.

Specialized hardware accelerators can address PQC bottlenecks more efficiently than general-purpose CPUs alone, especially
under strict performance or power constraints.

Area & Power Constraints
Dedicated accelerators can be designed to optimize exactly the operations required by a particular PQC scheme. This fine-tuned approach often uses fewer

transistors overall than a CPU handling the same workload, which can reduce both area and power draw, savings battery life and minimizing chip size.

Security
By embedding private keys in on-chip secure enclaves with tamper-resistant design and side-channel protections, custom hardware ensures cryptographic secrets

remain isolated and resilient against invasive attacks

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

7

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

RISC-V

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

8

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

What is RISC-V?
The Foundation for Flexible Crypto Acceleration.

RISC-V is an open-standard Instruction Set Architecture (ISA)
Unlike proprietary ISAs (e.g., x86, ARM), RISC-V is free, modular, and extensible.

Anyone can build, modify, or extend it — no license fees, no vendor lock-in.

Designed for Customization
RISC-V offers a base instruction set and allows you to plug in custom extensions for specific

domains like cryptography, AI, DSP, etc.

This enables designers to tailor the architecture to application-specific requirements.

Ideal for Crypto Acceleration
Cryptographic workloads, such as Keccak (SHA-3), benefit from tight hardware/software co-design.

RISC-V’s openness makes it easier to integrate hardware accelerators or custom instructions to speed up these tasks, with minimal friction in

toolchains.

01

02

03

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

9

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

How accelerators can be integrated?
SoC
A System on Chip is a single-chip system
integrating a RISC-V core with on-chip
memories, interconnect and peripherals

BUS
• High-speed on-chip interconnect linking the

RISC-V core, DMA engine, memories and
peripherals

DMA
• Dedicated controller that moves data

between memory and peripherals without
CPU intervention

Memory On-chip
• RAM/ROM storing code and data for the

RISC-V core to execute

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

10

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

How accelerators can be integrated?

Tightly-coupled

Coprocessor

Loosely-coupled

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

11

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

What are we accelerating?

Tightly-coupled

Loosely-coupled & Coprocessor
They both accelerate the whole KeccakF1600_StatePermute
function.

It accelerate a smaller part of KeccakF1600_StatePermute
function, which is ROL.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

12

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Keccak Accelerators

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

13

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Design Parameters

A clock cycle is the basic time unit in a synchronous design (the interval between

two successive rising (or falling) clock edges) during which state updates occur.

The clock period !!"# is the duration of one cycle, so the clock frequency

"!"# =
1
!!"#

• Latency: %&%'(%)*+ ,+- &,+-'%)&. = // ×!!"#
• Throughput: &,+-'%)&.1 ,+- 1+2&.3 = #5)%/(//× !!"#)
• FPGA Area: measured in LUTs, FFs, DSPs consumed by the design.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

14

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Loosely-coupled integration

Location
Outside the CPU core. Connected via a system bus (e.g., AXI).

Interaction
• The CPU must explicitly send data and wait for the result.

• Acts like a peripheral device (e.g., sending data to a GPU or external

module).

Implications
• High communication overhead (load/store latency).

• Easiest to implement (no changes to CPU internals).

• Best for reusability and modularity, but not optimal for

performance.

Memory-Mapped Accelerator.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

15

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Coprocessor integration

Location
External, but directly connected to the CPU via CV-X-IF.

Interaction
• Special custom instructions to send/load/store data to/from the accelerator.

• Has its own register file (KECCAK_REG) and executes whole Keccak-f operations.

Implications
• Offers a balance between independence and performance.

• Lower latency than memory-mapped.

• Slightly higher area due to the external register file.

CV-X-IF Attached External Unit.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

16

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Tightly-coupled integration

Location
Inside the CPU’s datapath, integrated into the ALU pipeline via CV-X-IF.

Interaction
• The accelerator (e.g., rol_32) acts as a custom instruction.

• Direct access to internal registers (RF) and ALU.

Implications
• Lowest latency, as it's like executing a normal instruction.

• Requires modifying the pipeline and supporting custom opcodes.

• Very efficient in area and performance per instruction.

In-Pipeline Custom Instructions.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

17

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Summary Comparison

Approach Integration Latency Modularity Area

Loosely-coupled Memory-mapped High High High

Coprocessor CV-X-IF Medium Medium High

Tightly-coupled In-pipeline ALU Low Low Lowest

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

18

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Integration Methodology

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

19

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Integration into the X-HEEP System
System Overview.

The three variants (representing the different
integration strategies) are evaluated within a
realistic SoC environment.

• Target Platform: X-HEEP [1], an open-source
microcontroller built around RISC-V.

• Core Used: All variants are integrated with the
CV32E40PX core [2], a RISC-V processor with
support for the CV-X-IF interface [3].

• System-Level Evaluation: This allows
comparison under consistent conditions (same
CPU, memory, bus, and peripheral architecture).

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

20

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Loosely-coupled Integration
DMA Setup.
The CPU initializes a Direct Memory Access (DMA) transaction to begin the Keccak
permutation. It specifies:
• Source address in RAM (where the input state is stored)
• Destination: the KECCAK register block (KECCAK_REG)
• Length of the transfer (typically 25 × 64-bit words).

State Transfer to KECCAK.
Once the DMA is triggered:
• The state is automatically fetched from memory,
• And written directly into the KECCAK_REG without CPU intervention. This decouples

the CPU from the data movement, saving cycles.

Start the Permutation.
With the state in place, the CPU sends a control command to the KECCAK module to
start the Keccak-f permutation. This is done via a memory-mapped register write (like
writing to a command register).

Write Back the Output.
Once the computation is done:
• The DMA writes the resulting state back to memory,
• Making it available for the CPU or subsequent operations.
The CPU can either poll a “done” register or use an interrupt to be notified.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

21

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Coprocessor Integration

Load the Keccak State.
The CPU uses a custom load instruction to move the input state
into the KECCAK register block. This instruction transfers the state
one 32-bit word at a time from the core register file into
KECCAK_REG via the CV-X-IF interface.
These instructions are handled by the CV32E40PX core, extended
to dispatch the data to the coprocessor.
Start the Permutation.
Once the full state is loaded, the CPU triggers a custom start
instruction. This command begins the 24-round Keccak-f
permutation inside the accelerator.
The computation happens autonomously, without further CPU
interaction. The accelerator remains tightly integrated within the
CPU subsystem, though not in the pipeline.

Retrieve the Result.
After completion, the CPU issues a custom store instruction to
fetch the result.
The KECCAK module returns the result 32 bits at a time to the
CPU register file.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

22

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Tightly-coupled Integration

Load the two 32-bit operands.
The rol_32 instruction takes its two 32-bit operands directly from the CPU’s
register file (RF).
Since Keccak is 64-bit but the core is 32-bit, two registers are used per operand.

Custom Logic Execution.
The rol_32 instruction performs the 64-bit rotation across the two 32-bit values,
using dedicated logic embedded in the ALU stage.
It operates in a single or very few clock cycles, thanks to tight coupling.

Result Storage.
The result of the rotation is written back to the scalar register file
in the following cycle(s), again using standard instruction flow.

The CPU executes Keccak normally in software, but every time the
ROL operation is required, it uses the custom rol_32 instruction.
 This is a pipeline-integrated instruction, executed like any ALU
operation.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

23

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Results

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

24

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Implementations Results
We implemented on the Zynq UltraScale+ ZCU104 board.

The synthesis and implementation are performed using Xilinx Vivado, with a global clock of 50 MHz.

Method Reference
[Clock cycles]

Accelerated
[Clock Cycles] Speed-up Throughput

[Mb/s]

Loosely

56,529

4,169 13.56× 4.61

Coprocessor 7,533 7.48× 2.56

Tightly 31,527 1.79× 0.61

FPGA Performances

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

25

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Implementations Results
We implemented on the Zynq UltraScale+ ZCU104 board.

The synthesis and implementation are performed using Xilinx Vivado, with a global clock of 50 MHz.

Method LUT Register

Loosely 4,915 3,252

Coprocessor 6,591 3,372

Tightly 569 129

FPGA Area

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

26

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Implementations Results
Method LUT Throughput

[Mb/s]
Throughput/Area

[kb/(s⋅LUTs)]

Loosely 4,915 4.61 0.937

Coprocessor 6,591 2.56 0.386

Tightly 569 0.61 1.070

The optimal trade-off between area and throughput is provided by the
tightly-coupled version.

Although it offers the lowest throughput and speed-up among the three
cases, it provides a lower number of LUTs with respect to the loosely and
coprocessor versions of, respectively, almost 9 and 11×.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

27

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Conclusions

Accelerating PQC is Feasible and FlexibleDesign Trade-Offs Matter

• The choice of the integration methodology should be
guided by system constraints:
• Area
• Performance
• Power consumption
• Design complexity

 Each approach brings a different balance of modularity,
 latency, and throughput.

• There is no one-size-fits-all strategy — the architecture
must be tailored to the target application and
environment.

• Post-Quantum Cryptography, while often
computationally intensive, can be efficiently accelerated
in embedded and general-purpose systems.

• RISC-V’s openness and extensibility allow seamless
integration of PQC accelerators at various levels of
coupling.

• Whether targeting IoT devices, edge platforms, or
secure microcontrollers, hardware support can make
PQC practical today — not just in the future.

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

28

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

[1] Pasquale Davide Schiavone, Simone Machetti, Miguel Peón-Quirós, Jose Miranda, Benoît Denkinger, Thomas Christoph Müller, Ruben Rodríguez, Saverio Nasturzio, and David
Atienza Alonso. 2023. X-HEEP: An Open-Source, Configurable and Extendible RISC-V Microcontroller. In Proceedings of the 20th ACM International Conference on Computing Frontiers
(CF '23). Association for Computing Machinery, New York, NY, USA, 379–380. https://doi.org/10.1145/3587135.3591431

[2] https://github.com/esl-epfl/cv32e40px

[3] https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/intro.html

References

https://doi.org/10.1145/3587135.3591431
https://github.com/esl-epfl/cv32e40px
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/intro.html

Exploring Integration Methodologies for Keccak Permutation in RISC-V Architectures

29

23 / 05 / 2025

Gruppo TIM - Uso Interno - Tutti i diritti riservati.

Thanks for the
attention!

Alessandra Dolmeta

alessandra.dolmeta@polito.it

23 / 5 / 25Crypto Conference

GruppoTIM.it

